10,466 research outputs found

    Therapeutic Drug Monitoring and Methods of Quantitation for Carbamazepine

    Get PDF
    Carbamazepine is an early anticonvulsant still used today in the treatment of several forms of epilepsy. An active metabolite in the human body contributes to its pharmacological effect. Carbamazepine metabolism has high inter-individual variability, such that it is relatively difficult to establish a direct link between dose and concentration, or between concentration and pharmacological effect. Carbamazepine is thus a good candidate for therapeutic drug monitoring (TDM). Good UV specific absorbance and high plasmatic concentrations allow for the use of UV detection, which is often more accessible than other methods of detection. This paper presents several methods used for the detection of carbamazepine in plasma, methods that are capable of detecting drug and metabolites at adequate levels/ acceptance criteria. These methods have possible application not only in pharmacokinetic, bioequivalence, and permeability studies, but also in the therapeutic drug monitoring of carbamazepine

    The 4-Aminopyridine Model of Acute Seizures in vitro Elucidates Efficacy of New Antiepileptic Drugs

    Get PDF
    Up to date, preclinical screening for new antiepileptic substances is performed by a combination of different in vivo models of acute seizures, for which large numbers of animals are necessary. So far, little attention has been paid to in vitro models, which are also able to detect antiepileptic efficacy and in principle could likewise serve for exploratory preclinical screening. One of the established in vitro models of acute seizures is the 4-aminopyridine (4-AP) model. Previous studies have shown that the 4-AP model is capable to recapitulate the antiepileptic efficacy of standard antiepileptic drugs (AEDs) such as valproate or carbamazepine. Here, we employed a dual methodological approach using electrophysiology and optical imaging to systematically test the antiepileptic efficacy of three new-generation AEDs with distinct mechanisms of action (lacosamide, zonisamide, and levetiracetam). We found that frequency of 4-AP induced seizure like events (SLE) was the most sensitive parameter to detect dose-dependent antiepileptic effects in these compounds. Specifically, levetiracetam reduced SLE frequency while lacosamide and zonisamide at higher doses completely blocked SLE incidence. Analysis of the intrinsic optical signal additionally revealed a subiculum-specific reduction of the area involved in the propagation of ictal activity when lacosamide or zonisamide were administered. Taken together, our data adds some evidence that acute seizure models in vitro are in principle capable to detect antiepileptic effects across different mechanisms of action with efficacy similar to acute models in vivo. Further studies with negative controls, e.g., penicillin as a proconvulsant, and other clinically relevant AEDs are needed to determine if this acute in vitro model might be useful as exploratory screening tool. In view of the increasing sensitivity toward animal welfare, an affective in vitro model may help to reduce the number of laboratory animals deployed in burdening in vivo experiments and to preselect substances for subsequent testing in time- and cost-laborious models of chronic epilepsy

    Effect of oxidative stress on ABC transporters: contribution to epilepsy pharmacoresistance

    Get PDF
    Epilepsy is a neurological disorder affecting around 1%-2% of population worldwide and its treatment includes use of antiepileptic drugs to control seizures. Failure to respond to antiepileptic drug therapy is a major clinical problem and over expression of ATP-binding cassette transporters is considered one of the major reasons for pharmacoresistance. In this review, we have summarized the regulation of ABC transporters in response to oxidative stress due to disease and antiepileptic drugs. Further, ketogenic diet and antioxidants were examined for their role in pharmacoresistance. The understanding of signalling pathways and mechanism involved may help in identifying potential therapeutic targets and improving drug response

    Modulation of the GABAergic pathway for the treatment of fragile X syndrome.

    Get PDF
    Fragile X syndrome (FXS) is the most common genetic cause of intellectual disability and the most common single-gene cause of autism. It is caused by mutations on the fragile X mental retardation gene (FMR1) and lack of fragile X mental retardation protein, which in turn, leads to decreased inhibition of translation of many synaptic proteins. The metabotropic glutamate receptor (mGluR) hypothesis states that the neurological deficits in individuals with FXS are due mainly to downstream consequences of overstimulation of the mGluR pathway. The main efforts have focused on mGluR5 targeted treatments; however, investigation on the gamma-aminobutyric acid (GABA) system and its potential as a targeted treatment is less emphasized. The fragile X mouse models (Fmr1-knock out) show decreased GABA subunit receptors, decreased synthesis of GABA, increased catabolism of GABA, and overall decreased GABAergic input in many regions of the brain. Consequences of the reduced GABAergic input in FXS include oversensitivity to sensory stimuli, seizures, and anxiety. Deficits in the GABA receptors in different regions of the brain are associated with behavioral and attentional processing deficits linked to anxiety and autistic behaviors. The understanding of the neurobiology of FXS has led to the development of targeted treatments for the core behavioral features of FXS, which include social deficits, inattention, and anxiety. These symptoms are also observed in individuals with autism and other neurodevelopmental disorders, therefore the targeted treatments for FXS are leading the way in the treatment of other neurodevelopmental syndromes and autism. The GABAergic system in FXS represents a target for new treatments. Herein, we discuss the animal and human trials of GABAergic treatment in FXS. Arbaclofen and ganaxolone have been used in individuals with FXS. Other potential GABAergic treatments, such as riluzole, gaboxadol, tiagabine, and vigabatrin, will be also discussed. Further studies are needed to determine the safety and efficacy of GABAergic treatments for FXS

    Introduction to Pediatric Epilepsy for Neuropsychology Students: A Literature Review

    Get PDF

    How Can Network-Pharmacology Contribute to Antiepileptic Drug Development?

    Get PDF
    Network-pharmacology is a field of pharmacology emerging from the observation that most clinical drugs have multiple targets, contrasting with the previously dominant magic bullet paradigm which proposed the search of exquisitely selective drugs. What is more, drug targets are often involved in multiple diseases and frequently present co-expression patterns. Therefore, useful therapeutic information can be drawn from network representations of drug targets. Here, we discuss potential applications of drug-target networks in the field of antiepileptic drug development.Fil: Di Ianni, Mauricio Emiliano. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Química Medicinal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Talevi, Alan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Ciencias Biológicas. Cátedra de Química Medicinal; Argentin

    Newer drugs for focal epilepsy in adults

    Get PDF
    A 28 year old woman sees her general practitioner after experiencing what sounds like a convulsion without any apparent provoking factor. Over the past month she has also had “blank spells” during which her husband noticed her to be unresponsive. Her general practitioner suspects she may have developed focal epilepsy and refers her to an epilepsy specialist. The specialist elicits from the patient and her husband additional features in the history that are highly compatible with seizures arising from the temporal lobe (lip smacking, ipsilateral motor automatism, and contralateral dystonia) and confirms the diagnosis by finding focal epileptiform discharges on electroencephalography and cortical dysplasia in the left temporal lobe on brain imaging. To prevent further seizures the specialist advises treatment with antiepileptic drugs (AEDs). The patient is reluctant to start treatment because she has read that AEDs have many adverse effects, could interact with her oral contraception, and are harmful for babies. She wonders if there are newer AEDs that for her might be better than the traditional ones

    Lennox-Gastaut Syndrome: A State of the Art Review.

    Get PDF
    Lennox-Gastaut syndrome (LGS) is a severe age-dependent epileptic encephalopathy usually with onset between 1 and 8 years of age. Functional neuroimaging studies recently introduced the concept of Lennox-Gastaut as "secondary network epilepsy" resulting from dysfunctions of a complex system involving both cortical and subcortical structures (default-mode network, corticoreticular connections, and thalamus). These dysfunctions are produced by different disorders including hypoxic-ischemic encephalopathies, meningoencephalitis, cortical malformations, neurocutaneous disorders, or tumors. The list of etiologies was expanded to pathogenic copy number variants at whole-genome array comparative genomic hybridization associated with late-onset cases or pathogenic mutations involving genes, such as GABRB3, ALG13, SCN8A, STXBP1, DNM1, FOXG1, or CHD2. Various clinical trials demonstrated the usefulness of different drugs (including rufinamide, clobazam, lamotrigine, topiramate, or felbamate), ketogenic diet, resective surgery, corpus callosotomy, and vagus nerve stimulation in the treatment of epileptic manifestations. The outcome of LGS often remains disappointing regarding seizure control or cognitive functioning. The realization of animal models, which are still lacking, and the full comprehension of molecular mechanisms involved in epileptogenesis and cognitive impairment would give a relevant support to further improvements in therapeutic strategies for LGS patients
    • …
    corecore